Kombinasi Algoritma KNN, HSV dan LBP Pada Pengolahan Citra Digital untuk Membedakan Kematangan Pisang
Keywords:
Android, HSV, K-NN, LBP, Banana RajaAbstract
The use of carbide in ripening bananas can result in chemical contamination of bananas. This can have a negative impact on the health of consumers who consume these bananas, so this research aims to design a system to differentiate between naturally ripe bananas and carbonated ripe bananas with Digital Images using the Hue Saturation Value (HSV), Local Binary Patterns (LBP) and K-Nearest Neighbor (K-NN). In this research, the system development used is UML (Unified Modeling Language). Meanwhile, making software in this system uses PHP, HTML, CSS, Java script software and for the database uses MySql. This research collects data obtained through observation, interviews and literature study. The method used to create this system is Hue Saturation Value (HSV) to extract color features, Local Binary Patterns (LBP) to extract texture features and the K-Nearest Neighbor (K) algorithm. -NN) for classification of plantain types. The digital image classification system distinguishes naturally ripe or carbitant plantains and can display classification results well so that it can help the public in distinguishing naturally ripened bananas or carbitants. The system created has been able to implement the Hue Saturation Value (HSV), Local Binary Patterns (LBP), and K-Nearest Neighbor (KNN) methods well and the system can differentiate naturally ripe bananas and carbonates well with a level of accuracy for the k= value 3, namely 100%, k=5 96.67%, k=7 93.33% and k=9 with an accuracy of 96.67% from 30 testing data using 200 training data.
References
S. B. Permata, “klasifikasi kematangan buah pisang secara alami dengan karbitan menggunakan metode K-NN.” 2021.
D. T. Lusi Lukita Wardani, “Pengaruh penambahan daun gamal, kelor, dan kabit dalam proses pemeraman pisang kepok (Musa paradasiaca L),” vol. 1, no. 2, pp. 83–89, 2023.
Melasari, “Pematangan Buah Pisang Dengan menggunakan Karbit (Calcium Carbida) ditinjau Dari Etika Bisnis Islam (Studi Di Pasar Punggur Kecamatan Punggur Kabupaten Lampung Tengah),” Skripsi, 2019.
A. Wicaksana and T. Rachman, “Mendeskripsikan bentuk pematangan buah pisang yang dilakukan oleh pedagang yang kemudian ditinjau berdasarkan perspektif ekonomi Islam,” Angew. Chemie Int. Ed. 6(11), 951–952., vol. 3, no. 1, pp. 10–27, 2020, [Online]. Available: https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf
S. K. Mubarak, M.Z., Lailiyyah., H., Wahyuni, D.P., Aini, M., Rahayu, Y.S., & Dewi, “Pengaruh Cara Pemeraman terhadap Pematangan Buah Pisang dan Nanas,” Pros. SEMNAS BIO, pp. 541–552, 2021.
S. P. Adenugraha, V. Arinal, and D. I. Mulyana, “Klasifikasi Kematangan Buah Pisang Ambon Menggunakan Metode KNN dan PCA Berdasarkan Citra RGB dan HSV,” J. Media Inform. Budidarma, vol. 6, no. 1, p. 9, 2022, doi: 10.30865/mib.v6i1.3287.
M. Halimah, S. Q. Rahim, A. Burara, and Y. P. Sari, “Implementasi Sistem Pendeteksi Kematangan Buah Pisang Menggunakan Metode Transformasi Ruang Warna HSI,” vol. 1, no. 01, pp. 72–76, 2022.
N. A. Maiyendra, “Perancangan Sistem Informasi Promosi Tour Wisata Dan Pemesanan Paket Tour Wisata Daerah Kerinci Jambi Pada Cv. Rinai Berbasis Open Source,” Jursima, vol. 7, no. 1, p. 1, 2019, doi: 10.47024/js.v7i1.164.
N. Arifin and I. S. Areni, “Klasifikasi Kematangan Stroberi Berbasis Segmentasi Warna dengan Metode HSV,” vol. 23, no. 2, pp. 113–116, 2019, doi: 10.25042/jpe.112019.03.
A. Syarifah, A. A. Riadi, and A. Susanto, “Klasifikasi Tingkat Kematangan Jambu Bol Berbasis Pengolahan Citra Digital Menggunakan Metode K-Nearest Neighbor,” JIMP (Jurnal Inform. Merdeka Pasuruan), vol. 7, no. 1, pp. 27–35, 2022, [Online]. Available: http://ejurnal.unmerpas.ac.id/index.php/informatika/article/view/417
N. Wijaya and A. Ridwan, “Klasifikasi Jenis Buah Apel Dengan Metode K-Nearest Neighbors,” J. SISFOKOM, vol. 08, no. 01, pp. 74–78, 2019.
N. Neneng, N. U. Putri, and E. R. Susanto, “Klasifikasi Jenis Kayu Menggunakan Support Vector Machine Berdasarkan Ciri Tekstur Local Binary Pattern,” Cybernetics, vol. 4, no. 02, pp. 93–100, 2021, doi: 10.29406/cbn.v4i02.2324.
A. H. Artya, J. Jasril, S. Sanjaya, F. Syafria, and E. Budianita, “Implementasi Convolutional Neural Network Untuk Klasifikasi Daging Menggunakan Fitur Ekstraksi Tekstur dan Arsitektur AlexNet,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 3, p. 635, 2022, doi: 10.30865/jurikom.v9i3.4177.
F. Al Azami, A. A. Riadi, and E. Evanita, “Klasifikasi Kualitas Wortel Menggunakan Metode K-Nearest Neighbor Berbasis Android,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 7, no. 1, p. 36, 2022, doi: 10.30645/jurasik.v7i1.413.
M. M. Baharuddin, H. Azis, and T. Hasanuddin, “Analisis Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 3, pp. 269–274, 2019, doi: 10.33096/ilkom.v11i3.489.269-274.
C. Paramita, E. H. Rachmawanto, C. A. Sari, D. R. Ignatius, and M. Setiadi, “Klasifikasi Jeruk Nipis Terhadap Tingkat Kematangan Buah Berdasarkan Fitur Warna Menggunakan K-Nearest Neighbor,” vol. 04, no. 1, pp. 1–6, 2019, doi: 10.30591/jpit.v4i1.1267.
J. Elektronika, T. Informasi, H. Khotimah, and N. Nafi, “Klasifikasi Kematangan Buah Mangga Berdasarkan Citra HSV dengan KNN,” vol. 1, no. 2, pp. 4–7, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Seminar Nasional Sistem Informasi dan Teknologi (SISFOTEK)

This work is licensed under a Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0