Naïve Bayes Classifier untuk Analisis Sentimen Isu Radikalisme

Authors

  • Tri A Sundara STMIK Indonesia Padang
  • Sherly Ekaputri STMIK Indonesia
  • Sotar Sotar STMIK Indonesia

Keywords:

sentiment analysis, radicalism, naïve bayes classifier, python

Abstract

The presence of twitter as medium that has been widely used by various groups of people. The community’s habit of posting tweets to assess a government policy discourse can be assessed as one of the media in representing the community’s response to the policy discourse. The policy discourse related to the prohibition of veils and Islamic trousers for the State Civil Apparatus is reaping contradictions from the public, especially twitters users. Public opinion can be analyzes using sentiment analysis. Sentiment analysis is a field of study that analyzes a person’s opinions, sentiments, evaluations, attitudes and emotions expressed in text form. Public opinion in the form of tweets will be collected by web crawling using the twitter application program interface (API). The data is processed using natural language processing (NLP) and python programming language. This study aims to produce information on public sentiment related to the prohibition of wearing veils and Islamic trousers for the State Civil Apparatus. This study uses the Naïve Bayes Classifier algorithm to classify 219 positive tweets and 333 negative tweets. The results of testing the accuracy of this study were 86%.

References

[1] Y. S. Mahardhika, E. Zuliarso, P. Studi, T. Informatika, F. T. Informasi, And U. Stikubank, “Analisis Sentimen Terhadap Pemerintahan Joko Widodo Pada Media Sosial Twitter Menggunakan Algoritma Naives Bayes,” No. 2015, Pp. 409–413, 2018.
[2] R. Y. Luthfia Oktasari, Yulison Herry Chrisnanto, “Text Mining dalam Analisis Sentimen Asuransi Menggunakan Metode Naive Bayes Classifier,” pp. 37–42, 2016.
[3] I. F. Rozi, E. N. Hamdana, M. Balya, And I. Alfahmi, “Pengembangan Aplikasi Analisis Sentimen Twitter ( Studi Kasus Samsat Kota Malang ),” Pp. 149–154, 2018.
[4] F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” vol. 3, 2018.
[5] R. Melita, V. Amrizal, H. B. Suseno, and T. Dirjam, “(TF-IDF) dan Cosine Similarity pada Sistem Temu Kembali,” vol. 11, no. 2, 2018.
[6] B. Herwijayanti, D. E. Ratnawati, and L. Muflikhah, “Klasifikasi Berita Online dengan menggunakan Pembobotan TF-IDF dan Cosine Similarity,” Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 1, pp. 306–312, 2018.
[7] N. D. Pratama, Y. A. Sari, and P. P. Adikara, “Analisis Sentimen Pada Review Konsumen Menggunakan Metode Naive Bayes Dengan Seleksi Fitur Chi Square Untuk Rekomendasi Lokasi Makanan Tradisional,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 9, pp. 2982–2988, 2018.
[8] B. Gunawan, H. S. Pratiwi, and E. E. Pratama, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,” vol. 4, no. 2, pp. 113–118, 2018.
[9] S. Wulan, U. Vitandy, A. A. Supianto, and F. A. Bachtiar, “Analisis Sentimen Evaluasi Kinerja Dosen menggunakan Term Frequency- Inverse Document Frequency dan Naïve Bayes Classifier,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 6, 2019.
[10] L. A. Andika, P. A. N. Azizah, and R. Respatiwulan, “Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier,” Indones. J. Appl. Stat., vol. 2, no. 1, p. 34, 2019, doi: 10.13057/ijasv2i1.29998.

Downloads

Published

2020-08-19

How to Cite

Sundara, T. A., Ekaputri, S., & Sotar, S. (2020). Naïve Bayes Classifier untuk Analisis Sentimen Isu Radikalisme. Prosiding SISFOTEK, 4(1), 93 - 98. Retrieved from https://www.seminar.iaii.or.id/index.php/SISFOTEK/article/view/159

Issue

Section

3. Data dan Diseminasi Informasi